Editor

Tomas Zelinka

Transport Telematics - Systemic View

Authors: Miroslav Svitek Zdenek Votruba Tomas Zelinka Vaclav Jirovsky Mirko Novak

ISBN: 978-1-61804-144-9

Transport Telematics - Systemic View

Editor

Prof. Tomas Zelinka

Authors

Miroslav Svitek Zdenek Votruba Tomas Zelinka Vaclav Jirovsky Mirko Novak

Transport Telematics - Systemic View

Published by WSEAS Press www.wseas.org

Copyright © 2013, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html

ISBN: 978-1-61804-144-9

World Scientific and Engineering Academy and Society

Preface

Intelligent transport systems (ITS) link information technologies with transport engineering. The ITS objective is to achieve principal transport, travel and forwarding processes services improvement within the existing transport infrastructure. ITS services cover requirements from an individual local case up to the complex wide area solutions with wide scale of services complexity. The telematics services are an integral part of the ITS. They do not represent the only telecommunications solutions, but they are tightly connected with a wide variety of transportation services. "Intelligent" services with the ability to support the relevant environment of the complex system structures are provided. Consequently, this discipline is closely linked with managerial and legal topics due to their ability to principally influence the system behavior.

There are numerous books and publication proceedings on the topic of ITS or transport telematics available but their approach and scope is different from ours. Typically, they describe the impact of ITS systems on traffic management e.g. real-time traffic management, planning of commercial vehicle operations, environmental management, etc. or they present parts of ITS solutions in big detail: e.g. electronic fare management, car navigation systems, fleet management, digital maps, strategies to reduce transport congestions, etc. In this book we introduce a very new system-oriented approach to the ITS design, operation and evaluation with respect to all predefined performance indicators like reliability, safety, security, integrity, etc.

Systems Theory represents a significant theoretical background for any professional undertaking within the branch of ITS. There are several approaches to elaborating this kind of theory, however, for engineering purposes such as the ITS the classical approach called General Theory of Systems (GTS) is usually accepted as the most beneficial. The Systems science within its application areas means resolving tasks. Efficient handling of the systems ideas implies functional knowledge of a wide range of specific mathematical tools.

The ITS applications require wireless seamless secure communications solutions with selectable level of services quality and mostly also with a wide-area coverage. Even though publically available wireless services usually provide reasonable coverage under acceptable cost conditions, most of the public providers do not offer any data service with the guaranteed quality. The principal improvement of the service quality can be reached by the selection of the best possible alternatives from the set of currently identified available services. Efficient decision processes must be adopted to reach the relevant service quality guarantee. Success of such approach relies on profound understanding of applied technologies and their performance described by the performance indicators.

Critical system properties are represented by security aspects. The difference between security and safety must be well understood. Safety assures that a life-critical system behaves as needed even when certain elements fail. Security is a condition that results from the establishment and maintenance of protective measures that ensure a state of inviolability from hostile acts or influences. Due to the fact that the human being has been a part of a system, security must be understood as a complex of measures leading to the survival of human beings in the system under the influence of an external hostile environment or any other influences. Analysis of potential threats and other security vulnerabilities specific for the telematic system represents the rest of this area. The behavior of a system consists of interactions among elements and it is to be assumed that these interactions have to be undisturbed, i.e. to be secure.

The ITS solutions resolve interactions between systems of a dissimilar nature. The differences can be in its nature, the types of these systems or in the role a particular human subject plays in such an interaction. The functional reliability has to be considered as an important factor specifying the practical applicability of any real system. The ITS system requires to be designed with high functional reliability. The original approach is based on understanding that reliable systems have to be constructed from adequately reliable parts. Such approach can, however, lead to unrealistic and extremely expensive solutions. Besides the usage of solely reliable components the method of lifetime minimization of system functional sensitivity to system parameter changes has been applied. The newest approach developed and used only quite recently has been based on the concept of the socalled prediction diagnostics.

This book addresses scientists, R&D specialists and transport systems designers, as well as students. While the articles were written by experts that are actively involved in the discussed areas research, our intention was to present the texts at a level suitable for a general science and R&D audience. Each article contains a list of references as a point of entry to the comprehensive resources. The preparation of this publication involved generous support from an extended specialist team and we would like to express our sincere thanks to each one of our colleagues.

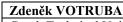
The Authors

Acknowledgements

The materials used for preparation of this book were reached by research supported by programs of the Czech Ministry of Industry and Business (MPO), Czech Ministry of Transport (MD) via following grants: e-Ident (Electronic identification systems within transport process) MPO 2A-2TP1/108, DOTEK (Communication module for transport telematic applications), MPO 2A-2TP1/105, SRATVU (System Requirements and Architecture of the universal Telematic Vehicle Unit), MPO 2A-1TP1/138, and the project ME 949 of the Czech Ministry of Education.

The Authors

About Authors



Miroslav SVÍTEK

Czech Technical University in Prague, Faculty of Transportations Sciences Chapter:

Advanced Design of Intelligent transport systems

Professor Miroslav Svítek was born in Rakovník, Czech Republic, in 1969. He graduated in radioelectronic from Czech Technical University in Prague, in 1992. In 1996, he received the Ph.D. degree in radioelectronic at Faculty of Electrical Engineering, Czech Technical University in Prague. Since 2002, he has been associated professor in engineering informatics at Faculty of Transportation Sciences, Czech Technical University in Prague. Since 2005, he has been nominated as the extraordinary professor in applied informatics at Faculty of Natural Sciences, University of Matej Bel in Banska Bystrica, Slovak Republic. Since 2008, he has been full professor in engineering informatics at Faculty of Transportation Sciences, Czech Technical Universidad Autonoma de Bucaramanga in Colombia. He is currently teaching courses and doing research in theoretical telematics, intelligent transport systems, quantum system theory and quantum informatics. Miroslav Svítek is president of Association of transport telematics of the Czech and Slovak Republic (it covers more than 70 public and private organization), Dean of Faculty of Transportation Sciences and Head of Department of Control Engineering and Telematics, Czech Technical University in Prague. He is author or co-author of more than 200 scientific papers and 6 monographs.

Czech Technical University in Prague, Faculty of Transportations Sciences Chapter:

Systems Theory applied in Intelligent Transport Systems

Proessor Zdeněk Votruba born in Prague, April 22, 1942.

Graduated at the Faculty of Electrical Engineering of the Czech Technical University in Prague in 1964.

Carried out his postgraduate studies in Computer Research Institute, Prague (VÚMS) and at the Faculty of Mathematics and Physics of the Charles University, Prague, respectively; PhD degree in Applied Physics received in 1975.

In the seventies studied postgraduate course of applied mathematics at CTU in Prague and seminar on informatics and computer architectures at VÚMS.

In the period of 1966-1993 worked with VÚMS as a researcher (1966-1976), scientist (1976-1983), director of technological dept. (1983-1990) and technical director respectively (1990-1993). Interested in measurement and instrumentation technologies, computer peripherals, HMI, in the research of thin magnetic films and Computer Systems. Involved in managing of the complex technological projects (e.g. bipolar gate arrays, testers).

In 1990-1993 participated in the transformation of an "eastern-style". Research Institute into the group of market-oriented private companies.

In one of them, VUMS-EPOS was active in 1994-5 in the post of managing director. Involved in consultancy services, both for domestic (state administration) and international bodies.

- In 1996 joined Czech Technical University in Prague, Faculty of Transportation Sciences.
- In 2000 gained the scientific pedagogical degree of Associate Professor in the scientific branch "Engineering Informatics".
- In the period of 2000-2008 he was in the posts of the head of Dept. of Control and Telematics and vice dean of Faculty.
- Since 2005 full professor of Engineering Informatics in Transportation and Telecommunication; Czech Technical University in Prague, Faculty of Transportation Sci.
- Reads Lectures in Systems Science and Electronics.

- Carries - out research in the fields of Systems Science, HMI, Telematics and Reliability. <u>Further activities</u>:

In seventies: teaching in postgraduate courses at CTU in Prague, Faculty of Electrical Engineering,

1980-1990: Seminars, consultancy and research at the Charles University, Faculty of Mathematics and Physics.

<u>Awards</u>:

Gold and Silver Felber's Medals of CTU in Prague; Perner's Medal of Jan Perner University in Pardubice

Membership in professional communities / bodies:

- Union of Czech and Slovak Mathematicians and Physicists
- IEEE (USA)
- Scientific Council of the Faculty of Transportation Sciences
- Grant Agency of the Czech Republic
- Evaluating Committee of the Ministry of Transport, Czech Republic
- Branch Council of Engineering Informatics CTU in Prague, Faculty of Transportation Sciences.
- Cybernetic Society of the Czech Republic

Tomas ZELINKA.

Fit do 2

Czech Technical University in Prague, Faculty of Transportations Sciences

- Chapter:
- Preface
- Telecommunications systems for ITS solutions

Professor Tomas Zelinka - Informatics - CTU in Prague, Ph.D. (CSc.) - experimental physics in the Czechoslovak Academy of Sciences, mgr. (Ing.) - Cybernetics and computer sciences at the Czech Technical University Praha, FEL

2005 - Czech Technical University in Prague, Faculty of Transportations Sciences

- Lectures: basic and advances lectures in area of the telecommunications sciences, legal issues of telecommunications, new trends in telecommunications applied in the Intelligent Transport Systems (ITS),
- R&D: theoretical background of specific telecommunications solutions dedicated for the ITS, vehicles Electronic Fee Collection (EFC) and related Value Added Services (VAS), On Board Units architecture, system security etc.

1993 – 2005 Communications business

- Development of the new products, the business development e.g. in area of alternative global voice and data communications in the Czech Republic and the other countries of the CEEMEA region
- EuroTel/Nextel/Global One (Sprint Int., France Telecom, Deutsche Telekom)
- External lecturer and mentor at the FTS of the CTU in Prague

1976 - 1993 Geophysical Institute of the Czechoslovak Academy of Sciences

- Experimental laboratory and observatory methods in geophysics, studies of the variations and drift of the Earth magnetic field, data communication solutions within international and national observatory system,
- Computer modeling of the magnetic material structures with on-line experimental identification, laboratory study of the magnetic properties of rocks,

1972 – 1976 Industrial R&D

- Automatic control systems for the technological processes – CNC,

Data communications and computer based control in technological processes.

Václav JIROVSKÝ

Chapter:

Czech Technical University in Prague, Faculty of Transportations Sciences

• Telematics System Security

Professor Václav Jirovský had graduated at Czech Technical University, Prague (CTU), Czech Republic, in radioeletronics. In his Ph.D. thesis he introduced application of theory of homogeneous structures in different areas of electronic and especially in the computer modeling. Lately he joined the Regional University Computing Center where he led department of Research and Development. His team had developed a new system for the city transport monitoring and control for Prague City Transport Corporation (PCT), based on combination of radio navigation and microwave communication. For short time he had entered the position of Executive Director for Development in the PCT, but after successful completion of the project he went back to

academia taking senior scientist position at Department of Software Engineering at Faculty of Mathematics and Physics, Charles University, Prague. In 1991 he had received position in Research and Development department of Advanced Computer Applications, Inc. in Newtown, Pennsylvania, U.S:A. finally becoming a director for R&D in the company. He left the company at 1998 joining his original team at Charles University. During years 2001/2002 he accepted position of Executive Director for Technology at Czech Telecom Corporation, lately returning back to Charles University as Associated Professor of Computer Sciences. In the year 2008 he changed position to the Czech Technologies and Engineering. In 2007, as a member of Expert Group of the Minister of Transportation of the Czech Republic, he designed a new concept of hybrid system for electronic tolling services. His design of hybrid toll system anticipate ISO/CEN standard for European Electronic Tolling Service and had been evaluated by standardization group as the nearest implementation of EETS.

Mirko NOVÁK

Chapter:

Czech Technical University in Prague, Faculty of Transportations Sciences

• Prediction diagnostics for system reliability

Professor Mirko Novak was born on September 29, 1930 in Prague, Czechoslovakia.

In 1956 he joined the Institute of Radioengineering and Electronics of the Czechoslovak Academy of Sciences in Prague, where was the head of the Department of System Theory.

In 1965 and 1966 he has been the visiting professor of the Department of Electrical Engineering of New York University.

- In 1975 he has founded a new Institute of Computer Science of the Czechoslovak Academy of Sciences. He has been in the position of the director of this Institute for almost 15 years. Since 1965 he is the senior member of the Institute of Electrical and Electronic Engineers, Inc. and in 1988 he becomes the Corresponding member of the Czechoslovak Academy of Sciences.
- His present research interest in the field of neural networks is mainly in the theory of sensitivity and tolerances of neural networks and of their applications for signal processing, time series prediction and system reliability improvement. He is also interested in internal information systems of living bodies and of cells and in the field of the human subject artificial, namely transportation system interaction reliability. Prof. Dr. Mirko Novák has written more than 150 research reports, about 110 scientific papers, has presented about 200 contributions on scientific conferences, colloquia and seminars and has published almost 30 scientific books in Czech, English and Russian, total about 500 scientific presentations.

At the end of 1994 he was one of the founders of the Joint Laboratory of System Reliability between the Czech Technical University, Prague, Faculty of Transportation Sciences and the Institute of Computer Science of the Academy of Sciences, Czech Republic. In 1999 he joined the activity of the workgroup for Neuroinformatics of the Global Science Forum OECD and took part in the preparing of the world research program in neuroinformatics. Since 2000 he is the full professor at the CTU, Faculty of Transportation sciences. He was to 2010 the chairman of the Czech National Node for Neuroinformatics and the Czech representative in

INCF (International Neuroinformatic Coordination Facility) of GSF OECD.

Table of Contents

Preface				
A	cknowl	edgement	ts	v
Aι	uthor's	Affiliatio	n	vi
1	A .]			1
1			esign of Intelligent Transport Systems by Miroslav Svitek	1
	1.1	Introdu		1
	1.2		UTS Southand Markel	4
		1.2.1	ITS System Model	4
			1.2.1.1 ITS Architecture	5
			1.2.1.2 ITS Market Packages1.2.1.3 ITS Standards	11 13
			1.2.1.4 ITS Data Registry	15
		1.2.2	ITS Performance Parameters	10
		1.2.2	1.2.2.1 Definition of Performance Parameters	17
			1.2.2.1 Definition of Performance Parameters 1.2.2.2 Quality of Measured Performance Parameters	17
			1.2.2.3 Estimation of Performance Parameters	20
			1.2.2.4 Illustrative Examples - Simulation Results	20 24
			1.2.2.4 Indistrative Examples - Simulation Results 1.2.2.5 Assessment of Safety Performance Parameters	24
			1.2.2.6 Illustrative Example - Geo-Object Detection	25 26
			1.2.2.7 Illustrative example - Cluster of ITS Applications using GNSS	20
		1.2.3	ITS Technological Platform	28 29
	1.3		fectiveness Assessment	30
	1.5		ITS Evaluation Processes	30
		1.3.1	ITS Effectiveness Analyse	30
		Referen		33
2	Syste	v	ory Applied in Intelligent Transport Systems by Zdenek Votruba	35
-	2.1	Introdu		35
	2.2		Concepts of Systems Sciences	35
	2.3	Systems Identification Task		37
		2.3.1	Systems Identification - An Intuitive Approach	37
			Systems Identification - Elaboration of Concepts	39
		2.3.3	Recommended Sequence of Systems Identification	41
		2.3.4	Systems Recording	41
		2.3.5	Model - System Relationship	41
		2.3.6	Ensuring Systems Existence	41
		2.3.7	Specific Types of Systems / Models	42
	2.4	Interfa	ce Task	42
	2.5	System	ns Structural Tasks	43
		2.5.1	Path Task	43
		2.5.2	Antecedent and Subsequent Elements Finding Task	43
		2.5.3	Feedback Identification Task	44
		2.5.4	Finding Elements or Relations with Specific Parameters Task	44
		2.5.5	Flow Network Task	44
		2.5.6	Systems Decomposition and Integration Task	44
		2.5.7	Systems Goals Task	45
	2.6		netics Essentials	46
		2.6.1	Control	46
		2.6.2	Logic Systems	48

	2.6.3	Communication	49
	2.6.4	Language	49
	2.6.5	Homeostasis	50
	2.6.6	Artificial Intelligence (AI)	50
2.7	Behavi	or Tasks	50
	2.7.1	Review of Concepts	50
	2.7.2	Basic Model of Behavior	51
	2.7.3	Extended Model of Behavior	51
	2.7.4	Parallel Behavior Task	55
	2.7.5	Alternative Behavior Task	55
	2.7.6	Genetic Code (CG) Behavior Task	56
		2.7.6.1 Classes of Behavior in Relation to the Genetic Code (Qualitatively)	56
	_	2.7.6.2 Analysis of Deviations from the GC (Quantitatively)	56
2.8	2	s Architecture Task	57
2.9	-	erability Task	57
2.10	Identity		58
2.11		s Reliability Task	58
	2.11.1	Reliability	59
		2.11.1.1 Reliability of the System Element or a System as a Whole in the Finite Deterministic Automaton	59
		2.11.1.2 Reliability of a System can be Defined in Several Ways [24]	59
		2.11.1.3 Reliability of Complex Heterogeneous Systems	59
	2.11.2	Homogenization	59
		2.11.2.1 Technological level	60
		2.11.2.2 Macro-Physical / Chemical Level	60
		2.11.2.3 Biological Level	60
		2.11.2.4 Social Level	60
		2.11.2.5 Hybridization of Levels	61
	2.11.3	Information Power	61
		2.11.3.1 Information Field	61
		2.11.3.2 Specific Subtasks of Messages Interpretation	61
		2.11.3.3 Definition	63
		2.11.3.4 Relation of IP and Systems Time	63
		2.11.3.5 Information Action	64
		2.11.3.6 Relation IP / Ordering	64
	0 1 1 4	2.11.3.7 Approaches to the IP Analysis	64
	2.11.4	IP Reliability	65
		2.11.4.1 Interface as a Fictitious System Element	65
		2.11.4.2 System Uncertainty	66
		2.11.4.3 Specification of the Subtask	66
		2.11.4.4 Reliability of the Non-Interacting IF	66 67
		2.11.4.5 Generalization of the Model for Interacting Interfaces	68
		2.11.4.6 Geometric Re-Interpretation of the Model2.11.4.7 Model Analysis	68
		2.11.4.8 Discussion of the Combined Effect of IF Dimension and Uncertainty	69
	2 11 5	Reliability in Information Systems	69
		Reliability of Complex Heterogeneous Systems	70
	2.11.7		70
		Construction of Systems Approach to the Reliability of Information Power	70
		Discussion	71
2.12		es Task	72
		Introduction	72
	2.12.2	Essentials of the Theory of Systems Alliances	73

			s and Information Power	74
	2.12.4	Models	of Interfaces in Alliances	74
	2.12.5	Alliance	Control	75
	2.12.6	Conclus	ions	77
2.13	Soft Sy	stems Tas	sks	78
	2.13.1	Overview	w of Basic Concepts	78
	2.13.2	Sources	of Systems Uncertainty	78
	2.13.3		ison of "Hard" and "Soft" Methodologies	78
	2.13.4	-	tems Analysis Techniques	79
		2	SWOT Analysis	79
			Force Field Analysis	80
	2.13.5		tems Methodologies (SSM)	81
			Action Research - Jenkins	81
			Checkland Soft - Systems Methodology [23]	82
	2 1 3 6		evel Process Model for Systems Analysis of Soft Systems - NIMSAD	83
	Referen			84
Telec	•		Systems for ITS Solutions by Tomas Zelinka	87
3.1	Introdu			87
3.2			communications Solutions in ITS Solution	88
	3.2.1		imunications Performance Indicators	90
		3.2.1.1	Service Activation Time (SAT)	90
		3.2.1.2		90
		3.2.1.2	MTBF (Mean Time Between Failure)	90
		3.2.1.4		90
		3.2.1.5	Delay	91
		3.2.1.6	Packet/Frames Loss	91
		3.2.1.7		91
			Class of Service - (CoS)	92
	3.2.2		nications Design Methodology	92 92
	3.2.3		s Telecommunications Alternative used in ITS Solutions	94
	5.2.5	3.2.3.1	Publically Available Services with National/Global Coverage	94
		5.2.5.1	(Europe based)	
		3.2.3.2	Locally Available Mostly as No Publically Served Services	94
3.3	Teleco		ions Systems	95
5.5	3.3.1		elecommunications Solutions Properties	96
	3.3.2		f Network According to Topology	96
	3.3.3		f Network According to the Hierarchy within a Network	97
	3.3.4	• •	f Networks According to the used Physical Layer	97
	5.5.4	3.3.4.1	Metallic	97
		3.3.4.2	Fiber	98
			Radio Frequencies Solutions	98
	3.3.5		and Packet Oriented Telecommunication Systems	98
	3.3.6		Architecture	99
	5.5.0	3.3.6.1	TCP - Transport Control Protocol	99
		3.3.6.2	IP - Internet Protocol	99
		3.3.6.3	IP Addressing	100
		3.3.6.4	Routing	100
		3.3.6.5	AS - Autonomous Systems	101
		3.3.6.6	Summary of TCP/IP Properties	101
3.4	Backho	one Netwo		101
5.4	3.4.1		escription of WDM	102
	J. T .1	3.4.1.1	DWDM	102
		3.4.1.1	CWDM	104
		J. 4 .1.2		104

		3.4.1.3	CWDM vs. DWDM	105
		3.4.1.4	WDM - Conclusions	106
	3.4.2	SDH/SO	NET	106
		3.4.2.1	PDH	106
		3.4.2.2	SDH Architecture	107
		3.4.2.3	SDH Network Architecture	107
	3.4.3	The ATN	M	108
		3.4.3.1	ATM Architecture	108
		3.4.3.2	Protocols of ATM Adaption Layer	108
			ATM Performance	108
	3.4.4	ETHERN	NET - IEEE 802.3 and ISO 8802	109
		3.4.4.1	IEEE 802.3 and IEEE 802.1q Standards -	109
			Alternative Telecommunication Networking	
		3.4.4.2	"Ethernet" and its Applicability in WAN	110
		3.4.4.3	Convergence Times Reduction	111
		3.4.4.4	Backbone Solutions based on "Ethernet"	112
	3.4.5	IP Virtua	al Private Networks (VPN) Solution	112
		3.4.5.1	MPLS IP VPN	113
		3.4.5.2	MPLS IP VPN vs. L2 VPN	113
3.5	Access	Wireless 1	Mobile Solutions	113
	3.5.1	Mobile T	Telecommunications Services	115
		3.5.1.1	DTMF (Dual Tone Multiple Frequency)	115
		3.5.1.2	CSD (Circuit Switched Data)	115
		3.5.1.3	HSCSD (High Speed Circuit Switched Data)	115
		3.5.1.4	IBS (Inband Software modem)	115
		3.5.1.5	SMS (Short Message Service)	116
		3.5.1.6	GPRS (General Packet Radio Service)	116
		3.5.1.7	EDGE (Enhanced Data Rates for GSM Evolution)	116
		3.5.1.8	CDMA (Code Division Multiple Access)	116
		3.5.1.9	UMTS (Universal Mobile Telecommunication System)	117
		3.5.1.10	LTE	117
	3.5.2	WiFi - II	EEE 802.11	119
		3.5.2.1	MAC (Media Access Control) Layer of WiFi Networks	119
		3.5.2.2	IEEE 802.11a	119
		3.5.2.3	IEEE 802.11b	119
		3.5.2.4	IEEE 802.11g	120
		3.5.2.5	IEEE 802.11e - Wireless QoS	120
		3.5.2.6	IEEE 802.11i	121
		3.5.2.7	IEEE 802.11n	121
		3.5.2.8	IEEE 802.11p	122
		3.5.2.9	IEEE 802.11r	122
		3.5.2.10	IEEE 802.11 - Conclusions	122
	3.5.3	WiMax		122
		3.5.3.1	WiMax–IEEE 802.16d	122
		3.5.3.2	Mobile WiMax - IEEE 802.16e	123
	3.5.4	PAN		123
		3.5.4.1	Bluetooth - IEEE 802.15.1	124
		3.5.4.2	UWB (Ultra-WideBand) - IEEE 802.15.3	124
		3.5.4.3	ZigBee - IEEE 802.15.4	125
	3.5.5		Dedicated Short-Range Communications)	127
		3.5.5.1	DSRC 5.8	127
		3.5.5.2	DSRC 5.9 - WAVE	128
	3.5.6	Wireless	Access Telecommunications Solutions Conclusions	129

	3.6	Selecte	d Wireless	s Telecommunications Services Performance	129		
		3.6.1	Mobile S	Services GSM	129		
			3.6.1.1	Methodology of Experiment	130		
			3.6.1.2	CSD Measurement Results	130		
			3.6.1.3	HSCSD Measurement Results	131		
			3.6.1.4	GPRS Measurement Results	131		
				EDGE Measurement Results	131		
				GSM date Services Summary	132		
		3.6.2		(IEEE 802.16d) Measurement Results	132		
		3.6.3		EEE 802.11) Measurement Results	132		
	3.7			ss Solution Structure	133		
	5.7	3.7.1		eas of the CALM Approach	134		
		3.7.1		E 802.21 Standard	134		
		5.7.2	3.7.2.1		138		
				The IEEE 802.21 Reference Model			
			3.7.2.2	Media-Independent Event Service	139		
			3.7.2.3	Media-Independent Command Service	139		
			3.7.2.4	Media-Independent Information Service	139		
			3.7.2.5	Service Management	140		
			3.7.2.6	Media-Independent Handover Protocol	140		
			3.7.2.7	MIH Communication Model	140		
			3.7.2.8	Handover Execution	140		
		3.7.3		ive Approach based on the "Intelligent Routing"	140		
			3.7.3.1	The DOTEK	141		
			3.7.3.2	Generalized DOTEK Architecture	143		
		3.7.4	Adaptive	e Decision Processes	143		
			3.7.4.1	Estimation and Prediction of Measured Performance Data Vector p(n)	144		
			3.7.4.2	Path Selection as Classification Process	145		
	3.8	Conclu	isions of S	ection Telecommunication Systems for ITS Solutions	147		
		Referen	nces		148		
4	Telen	elematics System Security by Vaclav Jirovsky					
	4.1						
	4.2	Securit	y Models		151 153		
	4.3	Cryptography					
		4.3.1		yptosystems	154 155		
			4.3.1.1	Transposition Ciphers and Substitution Ciphers	156		
			4.3.1.2	Vigenere Cipher and one Time Pad	158		
		4.3.2		cryption Standard - DES	160		
		1.5.2	4.3.2.1	Feistel Networks	161		
			4.3.2.2	DES Modes of Operation	163		
			<i>ч.</i> Ј. <i>2</i> .2	4.3.2.2.1 Electronic Codebook (ECB) Mode	163		
				4.3.2.2.2 Cipher Block Chaining (CBC) Mode	164		
				4.3.2.2.3 Cipher Feedback (CFB) Mode	164		
				1			
			4 2 2 2	4.3.2.2.4 Output Feedback (OFB) Mode	165		
			4.3.2.3	Strengthening DES	165		
				4.3.2.3.1 Double-DES (2DES)	165		
				4.3.2.3.2 3.5.2 Triple-DES (3DES)	166		
			0.1	4.3.2.3.3 3.5.3 DESX	166		
		4.3.3		sed Ciphers	167		
		4.3.4		ey Cryptography	167		
			4.3.4.1	Diffie-Hellman Coding	168		
			4.3.4.2	Mathematical background for RSA	168		
				-			
			4.3.4.3	RSA Cryptography raphic Checksum	169 171		

	4.3.6	Keyless	hash function HMAC	173				
	4.3.7	Cipher Techniques - Block and Stream Ciphers 17						
	4.3.8							
4.4	Attack	Analysis		179				
	4.4.1	•	by a User	180				
		4.4.1.1	Attacks on Sensors and OBU Input Data	180				
		4.4.1.2	1	181				
		4.4.1.3		181				
		4.4.1.4		182				
		4.4.1.5	1	182				
		4.4.1.6	Protecting the User Own Privacy	182				
	4.4.2		by Service Provider	183				
		4.4.2.1	Attacks to Increase Revenue from Customer or Overcharg					
			Customer	U				
		4.4.2.2	Attacks to Profile a Customer	183				
		4.4.2.3		183				
		4.4.2.4		184				
	4.4.3		by Service Charger	184				
		4.4.3.1	Attacks to Increase Revenue	185				
			4.4.3.1.1 Attacks on Charge Data	185				
			4.4.3.1.2 Attacks on Billing Details	185				
			4.4.3.1.3 Data Repudiation Attacks	185				
		4.4.3.2	Reselling the Data and Specific Information	185				
	4.4.4		by Hacker	185				
		4.4.4.1		186				
		4.4.4.2	5	186				
		4.4.4.3		187				
	4.4.5		by Hacktivist or Terrorist	187				
		4.4.5.1	Social Destabilization through Manipulation of the Telematic System					
		4.4.5.2	• •	188				
		4.4.5.3	Direct Furthering of Activists Cause	188				
		4.4.5.4	Reduction in Credibility of the System	189				
	4.4.6		nication Provider Attacks	189				
		4.4.6.1	Change in Network Utilization	189				
		4.4.6.2	Collecting the Travel Behavior	189				
	4.4.7		by Enterprise	189				
		4.4.7.1	Movement Tracking	189				
		4.4.7.2	Creation and Distribution of Cloned Equipment	190				
		4.4.7.3	Attack to Disable or Compromise System Encryption	190				
		4.4.7.4	Stealing Equipment	190				
		4.4.7.5	Racketeering	190				
	4.4.8	Attacks	by Government	191				
		4.4.8.1	In Theatre Commercial Advantage	191				
		4.4.8.2	Political Targeting of Individuals and Organizations	191				
		4.4.8.3	Tracking of Individuals	191				
	4.4.9	Attacks	by Foreign Power	192				
		4.4.9.1		192				
		4.4.9.2		192				
		4.4.9.3	Racketeering	192				
		4.4.9.4	International Prestige	193				
4.5	Asset b		eat Analysis	193				
	4.5.1							
	4.5.2		my of Threats	194				
		1.5.2 Taxonomy of fineats						

		4.5.2.1 The Basic Threats	194
		4.5.2.2 The Activation Threats	194
		4.5.2.3 The Underlying Threats	195
		4.5.3 Threats, Objects and Assets	197
	4.6	Technology of Wireless Attacks	199
		4.6.1 Eavesdropping	199
		4.6.1.1 Security on Physical Layer of the System	200
		4.6.2 Attack on Authentication	204
		4.6.2.1 Passwords and Attack on Passwords	205
		4.6.2.2 Challenge-Response Method	206
		4.6.3 Skimming	207
		4.6.4 Hiding and Jamming	207
		4.6.4.1 Antijamming Techniques at Physical Layer	208
		4.6.4.2 Antijamming Security Schemes	211
		4.6.4.2.1 Proactive Countermeasures	211
		4.6.4.2.2 Reactive Countermeasures	214
	4.7	Conlusion	215
		References	216
5	Predi	iction Diagnostics for System Reliability by Mirko Novak	221
	5.1	Introduction	221
	5.2	General Aspects of System Reliability Theory	222
		5.2.1 System Structures	222
		5.2.2 Structures of Heterogeneous Systems	225
	5.3	System Operation Reliability and Safety	227
		5.3.1 Prediction Diagnostic	228
		5.3.2 Hybrid Systems	229
	5.4	Brief Survey of Conventional Prediction Diagnostic Methodology	231
		5.4.1 System (or Alliance) Models	231
		5.4.2 Investigation of Regions of Acceptability	232
		5.4.2.1 Direct Approach	237
		5.4.2.2 Indirect Methods of RA Analysis	247
		5.4.2.3 Stochastic Approaches to RA Investigation	253
	5.5	Failure Risks (Hazards) Analysis	255
		5.5.1 Contemporary Artificial Systems and System Alliances and Data Structures	259
		Representing them	
		5.5.2 Possibilities of Multidimensional Data Storing	261
		5.5.3 Possibilities of Multidimensional Data Analysis and of Mining the Hidden	264
		Knowledge	
		5.5.4 Possibilities of Multidimensional Data Representation and Analysis, especially	274
		for Reliable Human Subject Interaction	
	5.6	Prediction Diagnostic in Multi-Parameter Systems	278
	5.7	Conclusion	281
		References	283
		Subject Index	285

SUBJECT INDEX

A

Access Network, 31, 97, 98, 123, 138, 139 Access Wireless Mobile Solutions, 113 Accident, 28, 50, 74, 151, 179, 193, 199, 208, 227, 256 Accuracy, 17, 19, 21, 22, 24, 28, 37, 70, 79, 81, 87, 92, 226, 231, 274 Activation Threats, 194 Adaptive Decision Processes, 143 Alliance Control, 73, 75, 265 Alternative Behavior, 55 Antecedent, 43, 44, 45 Antijamming, 206, 210-216 Artificial Intelligence, 50 Artificial systems, 221, 255, 259 AS, 101 ASN.1, 13, 15, 16 ATM, 95, 96, 100, 101, 102, 107-112, 121, 123, 177 ATM Architecture, 108 Attack by Enterprise, 189 Attack by Foreign Power, 179, 192 Attack by Government, 191 Attack by Hacker, 185 Attack by Service Charger, 184 Attack by Service Provider, 183 Attack on OBU, 181 Attack on OBU Data, 181 Attack on Sensor, 180 Authentication, 91, 101, 117, 121, 169, 172, 173, 178, 204 Availability, 4, 18, 19, 28, 87, 90, 96, 106, 112, 129, 141, 147, 152, 199, 215

B

Backbone Networks, 97, 102
Back-door, 195
Base Station, 88, 89, 116, 118, 122, 130, 138, 214
Basic Encoding Rules (BER), 16
Basic Threats, 194,195,196
Behavior, 40, 50, 51, 55, 56, 189
BER (Bit Error Rate), 137
Block Cipher, 163, 165, 174
Bluetooth, 89, 114, 124

С

CALM, 90, 92, 94, 114, 122, 131, 134 CAT, 97 CDMA, 106, 116, 118 Cellular Layer, 136 Classes Separability, 146 Communication, 49, 127, 140, 189 Communication Architecture, 5 Complementary Information, 204 Complementation Functions, 204 Constant Jamming, 212 Consumer Privacy, 152 Continuity 18, 87, 92 Core Business, 88, 95, 132 CoS, 92, 96 Cost-Benefit Analyze (CBA), 4, 30 Cryptographic Checksum, 171 Cryptography, 154, 167, 169, 176, 204 CSD, 94, 113, 115 CSD Measurement Results, 130 **CWDM**, 102 Cybernetics, 37, 46

D

Data Privacy, 152 Deceptive Jamming, 208 Decomposition, 44, 51, 87, 125, 197 Delay, 19, 91 Denial of Service, 188, 194 Design Centering, 233 Distinguished Encoding Rules (DER), 16 DOTEK, 141, 143, 147 DSRC, 6, 29, 94, 113, 127 DSRC 5.8, 94, 127, 210 DSRC 5.9 – WAVE, 95, 127, 128, 129 DTMF, 94, 113, 115 Duplex, 98, 117, 122 DWDM, 98, 102, 103

E

Economic Impact, 118 EDGE Measurement Results, 131 Electronic Toll Collection (ETC), 2, 127, 184 Elementary Catastrophe, 249 Elements, 39, 44 Environmental Functions, 223 ERTICO, 1, 2 ETHERNET, 89, 95, 109, 110, 113, 122 Expectation-Maximization (EM) Algorithm, 146 Exposure, 256 Extended Kalman Filtering, 145

F

Fail Safe, 28, 151
Failure Risks Analysis, 255
False Alert, 26, 27, 151
Feedback, 44, 92, 154, 165, 175, 214, 237
Feistel Networks, 161
First Generation of Handover, 136
Flow Network Task, 43, 44
Frequency Hopping Spread Spectrum, 124, 210
Functional Architecture, 5
Functional Blocks, 28, 221, 225, 231, 237, 252

G

Galileo, 88 Generalized DOTEK Architecture, 143 Genetic Code, 40, 45, 56, 73, 229 Global Navigation Satellite Systems (GNSS), 28 GNSS, 6, 28, 88, 127, 180 Goals, 45, 50, 70, 80, 122, 178, 187, 193 GPRS, 94, 113, 116, 130, 141 GPRS, Measurement Results, 131, 141 GPS, 27, 88, 101, 106, 132 GSM, 29, 94, 113, 127, 137, 147 GSM Date Services, 132

H

Half Duplex, 98 Handoff, 134 Handover, 92, 114, 118, 122, 129, 134, 138, 140, 143 Hazard Criteria, 256 Hazards, 256, 261, 281 Heterogeneous IEEE 802 Networks, 134 Heterogeneous Systems, 59, 70, 222 HMI (Human Machine Interface), 89 Homeostasis, 50 Homogenization, 38, 59, 60, 222, 230 Homogenous Systems, 224 HSCSD, 94, 113, 130 HSCSD Measurement Results, 131 Hybrid Systems, 59, 68, 72, 224, 230 HYPER-Ring, 111 Hysteresis, 248, 252

I

IBS, 115, 116 Identification, 36, 37, 41, 44 Identity, 40, 58, 204, 229 IEEE 802.11a, 119, 128 IEEE 802.11b, 119, 120 IEEE 802.11e, 119, 120, 122, 128, 134 IEEE 802.11g, 120 IEEE 802.11i, 121 IEEE 802.11n, 121 IEEE 802.11p, 122, 129, 137 IEEE 802.11r, 122 IEEE 802.15, 134 IEEE 802.15.1, 114, 124 IEEE 802.15.3, 124 IEEE 802.15.4, 123, 125 IEEE 802.16d, 94, 114, 122, 123, 132, 147 IEEE 802.16e, 114, 123, 129 IEEE 802.1q, 109, 110, 111 IEEE 802.21 Reference Model, 138 IEEE 802.21 Standard, 90, 134, 138 IEEE 802.3, 109, 112, 122 Independent Variables, 68, 72, 221, 228, 231, 236, 247, 274, 281 Information Architecture, 5, 7 Information Power, 59, 61, 69, 71 Initiator, 5, 87 Integration, 7, 19, 44, 115, 125 Integrity, 18, 28, 44, 59, 87, 92, 153, 194 Intelligent Routing, 90, 140 Intelligent Transport Systems (ITS), 1, 87 Interaction, 35, 151, 187, 221, 255, 258, 274, 277 Interaction Coupling, 229 Interface, 42, 89, 91, 180, 198, 225 Internal Rate of Return (IRR), 4, 30 Interoperability, 2, 17, 57, 71, 118, 199 IP, 61, 63, 71, 74, 89, 99, 109, 112, 130, 141 IP Addressing, 100, 128 ISO, 255 ITS, 1, 5, 11, 13, 16, 29, 30, 79, 88 ITS Architecture, 4, 5, 12, 29, 87 ITS Data Registry, 4, 13, 16 ITS Databases, 4 ITS Effectiveness, 4, 30 ITS Market Packages, 4, 11, 12, 29 ITS Performance Parameters, 17 ITS Requirements, 95, 117 ITS Standards, 4, 13, 17 ITS System Model, 4 ITS Technological Platform, 29

J

Jamming, 181, 193, 207, 208, 211-215

K

Kalman Filtering Algorithm, 145 Kernel Function, 145 Keyless Hash Function, 173

L

Language, 41, 49, 65, 76, 155, 230 Laplace Density Function, 146 Laplace Kernel, 146 Life Curve, 224, 229, 231, 236, 278 Life-Time, 221, 280 LTE 94, 113, 115, 117, 129

M

M from N, 25 M5, 122, 135, 137 MAC, 109, 120, 140, 172, 209, 212 MAN, 95, 109, 111, 113 Masquerading, 194, 197 Mass Market, 88, 96, 118 Medical Privacy, 152 Mobile WiMax, 94, 123, 129, 132, 136, 141, 147 Model, 41, 51, 68, 83, 138, 140 MPLS, 91, 95, 99, 101, 113 MTBF (Mean Time Between Failure), 19, 90 MTTR, 19, 90, 102, 109, 112 Multi Mode Optical Fiber, 98 Multi-Path Access, 134 Multipath Regime, 88

Ν

Natural Hazard, 256 Natural Systems, 221 Net Present Value (NPV), 30

0

OBU (Out Board Unit), 88 Optimization, 47 Organisation Architecture, 5 Organization Security, 153

P

Packed Encoding Rules (PER), 16
Packet/Frames Loss, 19, 91
PAN, 113, 123
Parallel Behavior, 55
Parameter Synchronization, 14
Parts, 5, 31, 38, 42, 60, 76, 88, 100, 175, 188, 199, 222
Password, 197, 204, 205, 206
Path, 43, 52, 56, 82, 94, 101, 108, 134, 145
PBT, 102, 107, 110, 111, 112, 113
PDH, 106, 107
Performance, 4, 17, 19, 25, 28, 87, 90, 108, 129, 144, 147, 201
Personal Security, 153
Physical Architecture, 5, 11, 30

Physical Layer, 97, 100, 109, 119, 122, 177, 200, 208 Political Privacy, 152 Prediction Diagnostic, 228, 231, 278, 281 Prediction Diagnostic in Multi-Parameter Systems, 278 Prediction Diagnostic Methodology, 231 Probability, 17, 18, 20, 25, 54, 71, 90, 146, 152, 171, 203, 228, 236, 254, 256, 276 Product Security, 153 Production Wreck, 234 Profitability Index (NPV/I), 30 Protocol Synchronization, 13, 15 Public Key Cryptography, 167 Public Providers, 88, 115 Public Telecommunications, 88, 115

Q

QoS, 94, 102, 108, 119, 120, 140 Quality, 19, 47, 50, 88, 102, 120, 125

R

Radial Sprouting, 254 Random Jamming, 212 Reactive Jamming, 212 Reference Architecture, 5, 6 Regions of Acceptability, 226, 232 Relations, 35, 44 Reliability, 18, 21, 54, 58, 59, 65, 70, 222, 227 Restoration Procedure, 234, 275, 279 Right Detection, 26 Risk Analysis, 18, 58, 91, 197, 256 Risk Criteria, 256 RM OSI, 100, 127, 134 Routing, 90, 101, 113, 125, 140, 177, 214 RSTP, 111, 113 RTD (Round Trip Delay), 130, 136

S

Safety, 11, 25, 151, 221, 227 SAT, 90 SDH, 102, 106, 107 SDH Architecture, 107 Second Generation of Handover, 129, 136, 143 Security, 19, 88, 91, 126, 151, 179, 200, 211 Security Models, 153 Service Activation Time, 19, 90 Service Availability, 90 Services Performance, 95, 129 Simplex, 98 Single Mode Optical Fiber, 98 SLA, 89, 96, 102, 111, 129 SMS, 94, 113, 116

Social Engineering, 199 Social Destabilization, 188, 192 Soft Systems Analysis Techniques, 79 Soft Systems Methodologies (SSM), 81 Soft Systems Tasks, 78, 81 SONET, 102, 104, 106, 111 STP, 97, 110, 111, 112 Stream Cipher, 165, 174, 175 Structural Tasks, 43 Subsequent Elements, 43 Subsystem, 5, 44, 75, 87, 180 System, 4, 36, 37, 41, 42, 44, 50, 87, 151 System Alliances, 68, 77, 222, 256, 259, 281 System Approach, 31, 70 System Functions, 18, 51, 221, 223-226, 247, 251, 278 System Parameters, 5, 6, 17, 87, 101, 119, 125, 133, 183, 223, 247, 281 System Reliability, 222, 228, 236 System Reliability Theory, 222 System Safety, 221 System Security, 153 System Structures, 137, 222 System Vulnerability, 186 Systems, 1, 35, 39, 40, 42, 73, 78, 87, 98, 147, 151, 215, 221, 259 Systems Architecture, 57, 71, 134 Systems Reliability, 58, 59, 70, 226 Systems Uncertainty, 59, 78

Т

TCP, 99, 102 TCP/IP, 91, 95, 101, 109, 123, 134, 140 TCP/IP Architecture, 89, 99, 135 Technological Hazard, 256 **Telecommunications Performance Indicators** 88, 90, 95, 134 Telematic System 19, 119, 152, 179, 188, 215 Terminator, 5, 87 The Data Encryption Standard, 160 Theory of Systems Alliances, 73 Time Synchronization, 13, 184, 214 Trans-European Network for Transport (TEN-T), 2 Transport Telematics, 1, 13, 28, 79, 95, 134, 141 Transposition Cipher, 156, 161 Trojan Horse, 195, 197

U

UMTS, 94, 113, 117, 129, 132, 147 Underlying Threats, 194, 195 UTP, 97 UWB, 114, 123, 124, 135, 211

V

Vigenère, 158, 160, 175 VPN, 111, 112, 113 Vulnerability, 167, 175, 186, 190, 196, 215, 256

W

WAN, 31, 95, 109, 110, 180, 198
WDM, 102, 106
Well Designed System, 233
WiFi, 29, 94, 115, 122, 133, 147, 199
WiFi (IEEE 802.11) Measurement Results, 133
WiMax, 94, 122, 147
WiMax - IEEE 802.16, 94, 141
WiMax (IEEE 802.16d) Measurement Results, 132

Y

Yield, 168, 223, 233

Z

ZigBee, 89, 114, 123, 125, 134